
L. Ma, R. Nakatsu, and M. Rauterberg (Eds.): ICEC 2007, LNCS 4740, pp. 255–262, 2007.
© IFIP International Federation for Information Processing 2007

Video Processing and Retrieval on Cell Processor
Architecture

Junqing Yu and Haitao Wei

Computer College of Science & Technology,
Huazhong University of Science & Technology, Wuhan, 430074, China

yjqing@hust.edu.cn, whtaohust@163.com

Abstract. A multi-level parallel partition schema and three mapping model –
Service, Streaming and OpenMP model – are proposed to map video processing
and retrieval (VPR) workloads to Cell processor. We present a task and data
parallel partition scheme to partition and distribute intensive computation
workloads of VPR to exploit the parallelism of a sequential program through
the different processing core on Cell. To facilitate the VPR programming on
Cell, OpenMP programming model is loaded to Cell. Some effective mapping
strategies are also presented to conduct the thread creating and data handling
between the different processors and reduce the overhead of system
performance. The experimental results show that such parallel partition schema
and mapping model can be effective to speed up VPR processing on Cell multi-
core architecture.

1 Introduction

Nowadays, with the rapid development of multimedia and network technologies,
digital video information has grown exponentially. Digital video rapidly becomes an
important source for information, education and entertainment. It is much easier to
access video content via network than ever. How to help people conveniently and fast
retrieve the interested video content is becoming more and more important. To this
aim, content-based video processing and retrieval (VPR) is extremely needed. VPR
has been an international research focus in multimedia domain. However, the intrinsic
features of video, such as rich and non-structured data, intensive computing, and
complex algorism, have prohibited VPR’s further development. VPR programming is
challenging and real-time processing and parallelization are expected.

Multi-core chip architecture is becoming the mainstream solution for next
generation microprocessor chips. Cell processor, developed by IBM/Sony/Toshiba,
provides an efficient high performance computation platform, with 9 cores one
PowerPC Processor Element (PPE) and eight Synergistic Processor Elements
(SPE). In order to meet the intensive computation and the real-time processing, we
port VPR to Cell multi-core processor, with each core performs a part of VPR
processing. A multi-level parallel partition schema and three mapping model
(Service, Streaming and OpenMP model) are proposed to map VPR workload to the
9 cores of Cell.

256 J. Yu and H. Wei

The rest of this paper is organized as follows. In section 2, we try to use Service
and Streaming model to map VPR workloads to Cell. It is proposed to map OpenMP
programming model to Cell in section 3. Section 4 concludes this paper.

2 Video Processing and Retrieval on Cell

As digital video data becomes more pervasive, mining information from video data
becomes increasingly important, but the huge computation prohibits its wide use in
practice. Accelerating the video processing application by exploiting multi-level
parallelism on Cell would be a promising way to boost the performance and provide
more functionality for VPR.

2.1 Cell Architecture Overview

The first-generation Cell processor consists of a 64-bit multithreaded Power PowerPC
processor element (PPE) and eight synergistic processor elements (SPE) connected by
an internal, high-bandwidths Element Interconnect Bus (EIB) [1]. The PPE contains
two levels of globally coherent cache and also supports Vector/SIMD Multimedia
Extension (VMX) instruction set to accelerate multimedia and vector application [2].
The major powerful computation ability derives from the eight SPEs. Each SPE
contains non-coherent local store for instructions and data.

Fig. 1. Overview of video processing and retrieval framework

2.2 Video Processing and Retrieval Framework

Video processing and retrieval aims to help users to search, browse and manage video
contents easily. The key components include low-level feature extraction such as
visual and audio features, shot boundary detection, scene segmentation, video
structural summary, high level semantic concept detection, annotation, indexing and
content-based video retrieval [3]. We propose an efficient framework for indexing,
browsing, abstracting and retrieval of sports video. As illustrated in Fig. 1, the

 Video Processing and Retrieval on Cell Processor Architecture 257

framework consists of five stages: low-level feature extraction, mid-level feature
extraction, high-level feature extraction, representation, browsing and retrieval as
well. In these five stages, there exist multi-level parallelisms, such as feature
extraction, indexing and retrieval, which can be exploited intensively.

2.3 Service and Streaming Programming Model for VPR on Cell

The key characteristics of VPR application are variety of tasks and intensity of
computation. Therefore, the Service Model and the Streaming Model are proposed to
be the best candidates.

Fig. 2. Service Model of Video Processing Fig. 3. Stream Model of Video Processing

Fig. 2 shows the Service Model in video processing. The processor assigns
different services to different coprocessors, and the processor’s main process calls
upon the appropriate coprocessor when a particular service is needed. It is well known
that feature extraction is a basic and important step in video processing. Here, each
feature extraction is regarded as a service, which is assigned to one or more
coprocessors and the processor’s main process call upon these coprocessors’ services
needed. Fixed static allocation of coprocessors’ services is avoided. These services
are virtualized and managed on a demand-initiated basis.

Fig. 3 illustrates the Streaming Model, the main processor acts as a stream
controller, and the coprocessors act as stream-data processors in either a serial or
parallel pipeline. In video processing, each procedure has inherent computing stage
which is mapped to one coprocessor. Here, the first coprocessor decodes the input raw
video data stream and outputs decoded video data stream. The second coprocessor
takes the decoded video data stream as input and extracts the feature 1 in stage 2.
Finally, the third coprocessor extracts feature 2 and output the result data to the main
processor. Under the control of the main processor, all the coprocessors work together
in a pipeline to speed up the computation performance.

2.4 Block Matching Algorithm on Cell Using Parallel Partition

2.4.1 Block Matching Algorithm
Block matching algorithm is an important step of motion compensation algorithms for
inter-frame predictive coding, which is used to eliminate the large amount of temporal
and spatial redundancy that exists in video sequences and helps in compressing them.
These algorithms estimate the amount of motion on a block by block basis, i.e. for

258 J. Yu and H. Wei

each block in the current frame i, a block from the previous/after frame j is found, that
is said to match this block based on a certain criterion.

Here, the block matching criteria is the sum of absolute differences and the
algorithm is Full Search or the Exhaustive Search. As Fig.4 shown, each block within
a given search window in frame j is compared to the current search block g(x,y) in
frame i. At each search step, the sum of absolute differences between the search block
and the given block f(x,y) is evaluated using the following criterion.

1 1

(,) (,)
K K

x y
i j

AE f i j g i d j d
= =

= − − −∑∑ (1)

Where, K means the size of the block, xd and yd refers to the motion vector,

which means amount of motion from the current block to the aim block. The best
match is obtained if AE achieves the minimum.

0

50,000

100,000

150,000

200,000

250,000

800x600
1600x1200
2000x1500

Ex
ec

ut
io

n
Ti

m
e(

µs
)

Performance Analysis

 Fig. 4. Illustration of Block Matching Fig. 5. Performance Analysis on Block Matching

2.4.2 Parallel Scheme of Block Matching Algorithm
The sequential algorithm uses four nested loops to evaluate the minimum AE. As the
program following, array Block[8][8] and Frame[M][N] are allocated for the current
search block and search window respectively, and variable diff preserves the absolute
difference at each searching step. The minimum absolute difference and
corresponding motion vector are stored in variable min, x and y respectively.

…
For(i=0;i<M-7;i++)
 for(j=0;j<N-7;j++){
 for(l=0;k<8;l++)
 for(m=0;l<8;m++)
 diff+=abs(Block[k][l]- Frame[k+i][l+j]);
 if(diff<min)
 {min=diff;x=i;y=j;}
 }
…

In order to contrast the performance improvement and communication overhead
generated by different level parallelism, a step by step parallel scheme is adopted on

 Video Processing and Retrieval on Cell Processor Architecture 259

Cell. In the first step, we SIMDize the code for PPE to attain the data level
parallelism, and then port the PPE code to multiple SPEs to achieve the task and data
level parallelism. Finally, the overhead of communication is measured by setting the
number of thread to one.

Scheme 1: SIMDize the code for execution on PPE
The main idea in this scheme is to utilize the VMX instruction set to accelerate the
data computation. VMX instructions-vec_perm, vec_abs, vec_add, and vec_sums-are
used to execute the vector absolute evaluation by allocating the array block[8][8] and
frame[M][N] into one dimension array of vector. By this way, computation
complexity is reduced by about 8 times and the number of loops is decreased to 3.

Scheme 2: Parallelize Code for Execution across Multiple SPEs
PPE initializes to partition and distribute the task to each SPE. It divided the search
window into some sub-windows, and then maps the matching procedure in each sub-
window to each SPE to evaluate the local minimum of AE and correlative local motion
vector. In the end, PPE reduces the global AE and correlative global motion vector
comparing all the local AE. SPEs receive the sub-window and current block from PPE,
search the best local match to get the local minimum of AE and correlative motion
vector, and sends the results to PPE to evaluate the global AE and motion vector.

The different instruction set between PPE and SPE makes the program running on
Cell partitioned into two sections – PPE code for PPE and SPE code for SPE. The
following PPE Code shows that the subroutine spe_create_thread creates a group
threads running on SPE, the address of the data can be transmitted through the
parameter ctx. After the threads are created, subroutine spe_wait is called to wait all
the SPE threads to finish. At last, PPE gets the global result from local result returned
from the SPE. In the SPE Code, each SPE gains the data from PPE through DMA
transform, and then evaluates local minimum AE and the coordinate motion vector
with SIMD instruction in SPE. After matching, each SPE sends the result to PPE by
DMA.

PPE Code:
…
//correspond to ‘fork’ in OpenMP
For(i=0,offset=0;i<SPE_THREADS;i++,offset+=P){
// Create SPE thread of execution passing the context

as a parameter.
spe_ids[i] = spe_create_thread(0, &match_multi_spu,
&ctx[i], NULL, -1, 0); }
…
// correspond to ‘join’ in OpenMP
 for(i=0;i<SPE_THREADS;i++){
(void)spe_wait(spe_ids[i],&status,0); }
//find the globe minimum, coordinate x,y
for (i=0; i<SPE_THREADS;i++){
 if(diff[i]<globemin)
 {globemin=diff[i];x=posx[i];y=posy[i];}
}

260 J. Yu and H. Wei

SPE Code:
…
//gain the data from ppe
spu_mfcdma32(…, MFC_GET_CMD);
…
//compute the absolute and the local minimum and
//the coordinate x,y with SIMD instruction in spu.
…
uschRowAbs_v[k]=spu_absd(model_v[k],uschRow_v[k]);
if(diff[k]<localmin)
 {localmin=diff[i];x=posx[k];y=posy[k];}
…
spu_mfcdma32(…, MFC_PET_CMD); //return the resulte

Scheme 3: Set 1 thread to Measure the Communication Overhead
Comparing to the program only running on PPE without communication with SPE,
the program is ported to one SPE to measure the communication overhead setting the
MARO SPE_THREADS of the SPE thread to one.

2.4.3 Experimental Results
The experiment of block matching algorithm was realized on IBM Cell simulator
v2.0, using the language of PPE SPE C/C++ language extension (Intrinsics), with the
SDK v2.0 [4]. As Fig. 5 shows, parallelization boosts the performance dramatically
with the resolution accreting. Here, approximate 5x speedup is achieved referring to
the resolution of 2000×1500 contrasting to 2x speedup referring to resolution of
800×600. The performance achieves a peak with SPE increasing, but over
parallelization deteriorates the performance. Referring to the resolution of 800×600,
1600×1200, and 2000×1500, the number of SPE to achieve the best performance is
4, 6, 7, respectively. It is illustrated that with the SPE increasing, the computation
ability is strengthened, but the communication overhead is expanding as well. Only
when the balance point reaches, the best performance is achieved.

3 Loading OpenMP Programming to Cell

Cell provides an efficient computation resource for application of intensive
computation with the data and the task level parallelism. But, programming on Cell
for VPR is not an easy job, e.g., the block matching algorithm in section 3,
programmer has to be acquainted with the Cell architecture, PPE and SPE instruction
sets, DMA transfer, and register files, etc. Although suit for VPR, Service and
Streaming models are low level and inconvenient. All of these constrain the
improvement of facility and performance for programming. OpenMP is an industrial
standard for shared memory parallel programming agreed on by a consortium of
software and hardware vendors [5]. It consists of a collection of compiler directives,
library routines, and environment variables that can be easily used for VPR
programming on Cell [6].

 Video Processing and Retrieval on Cell Processor Architecture 261

3.1 Loading Strategy

The parallel computation needs to be split among PPE and SPE processors. The
parallelism is represented in OpenMP using “parallel” directive. PPE and SPE
processors can be viewed as a group of “threads”. Through data allocation PPE tells
each SPE processor to execute specific regions in parallel. PPE executes the region as
the master thread of the team. At the end of a parallel region, PPE waits for all other
SPE to finish and collect the required data from each SPE [7, 8].

3.2 Exploitation Locality

The shared data is allocated in the main storage of PPE, and can be accessed
exclusively through the atomic operation on Cell. Operation on shared data, each SPE
needs to translate the local address to the effective address. The solution is to keep a
copy of the shared data in the local storage of each SPE instead of the direct accessing
to main storage when reading/writing the shared data. Then, if the local copy of the
shared data is updated, the changed data will be written through DMA transfers back
to the main storage after the end of parallel section.

3.3 Parallel Synchronization

The parallel synchronization is implemented with the mechanisms of memory tag
polling and event trigger on Cell. The first method is to allocate a tag memory for
each SPE with values initialized to “0” and each SPE polls the tag to wait the task
assigned by PPE. PPE wakes up each SPE by setting the tag to “1”. If detecting the
tag set to “1”, then each SPE runs the computation immediately, and after the
computation is completed, the tag is set to “2” to notice PPE. At the same time, the
PPE polls the tag until all of them are set to “2” by the SPEs, and then the PPE cleans
the tag to “1” to resume the SPE execution. The second method is to utilize the
mailbox and signal mechanism for parallel synchronization. The PPE deploys the task
to each SPE by sending signal, once receiving the “start” signal each SPE does the
work from PPE. And at the time of barrier, each SPE will send “completion” event to
PPE by mailbox and then sleep. Once receiving all the events from SPEs, PPE will
resume the SPEs to continue to work.

4 Conclusion

This paper presents a parallel partition schema and three mapping model to load video
processing and retrieval (VPR) workloads to Cell multi-core processor. By means of
partition and distributing the intensive computation workload to PPE and SPEs, the
VPR processing is accelerated notably and a remarkable speedup is achieved. The
proposed Service and Streaming models which use the mode of allocating-calling and
data-streaming pipeline, are suitable and efficient, but somewhat of inconvenient. In
addition, OpenMP programming model is presented on Cell to facilitate mapping
VPR to Cell. Some effective strategies for data distribution and processor
synchronization are also proposed by comparing the different approaches of data
distribution and processor synchronization. And the overhead of the strategies for data

262 J. Yu and H. Wei

sharing and processor synchronization are tested.The proposed partition schema and
mapping model are reasonable for VPR on Cell, but there is a lot of work left to do,
for example, the effectiveness of VPR mapping and the improvement of data
distribution and synchronization mechanism between the PPE and the SPEs.

Acknowledgements

We gratefully acknowledge the financial supports received from Intel Corporation for
a study of multi-core programming environment.

References

1. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle, J.,
Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M.,
Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., Yazawa, K.: The Design and
Implementation of a First-Generation CELL Processor. In: Proc. IEEE International Solid-
State Circuits Conference, pp. 184–185. IEEE Computer Society Press, Los Alamitos (2005)

2. IBM Microelectronics Division: PowerPC Microprocessor Family: AltiVec Technology
Programming Environments Manual. IBM Corporation, pp. 282–308 (2004)

3. Li, E., Li, W., Wang, T., Di, N., Dulong, C., Zhang, Y.: Towards the Parallelization of Shot
Detection – a Typical Video Mining Application Study. In: Proc. 35th International
Conference on Parallel Processing (2006)

4. IBM Corporation: IBM Full-System Simulator User’s Guide version 2.0. IBM Corporation
(2006)

5. OpenMP Architecture Review Board: OpenMP C and C++ Application Program Interface
Version 2.0. (2002), http://www.openmp.org

6. Liu, F., Chaudhary, V.: Extending OpenMP for Heterogeneous Chip Multiprocessors. In:
Proc. 32nd International Conference on Parallel Processing (2003)

7. Eichenberger, A.E., O’Brien, K., O’Brien, K., Wu, P., Chen, T., Oden, P.H., Prener, D.A.,
Shepherd, J.C., So, B., Sura, Z., Wang, A., Zhang, T., Zhao, P., Gschwind, M.: Optimizing
Compiler for a CELL Processor. In: Proc. 14th International Conference on Parallel
Architectures and Compilation Techniques (2005)

8. Wei, H., Yu, J.: Mapping OpenMP to Cell: A Effective Compiler Framework for
Heterogeneous Multi-Core Chip. In: Proc. International Workshop on OpenMP (to appear,
2007)

	Video Processing and Retrieval on Cell Processor Architecture
	Introduction
	Video Processing and Retrieval on Cell
	Cell Architecture Overview
	Video Processing and Retrieval Framework
	Service and Streaming Programming Model for VPR on Cell
	Block Matching Algorithm on Cell Using Parallel Partition

	Loading OpenMP Programming to Cell
	Loading Strategy
	Exploitation Locality
	Parallel Synchronization

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

